organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-(4-methylphenylsulfonamido)-3-phenylpropanoate

Ping Yin,* Mao-Lin Hu, Jing Xiong and Xiao-Wei Yan

College of Chemistry and Materials Engineering, Wenzhou University, Zhejiang, Wenzhou 325027, People's Republic of China Correspondence e-mail: hbyinping2002@163.com

Received 9 April 2007; accepted 14 April 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.078; wR factor = 0.172; data-to-parameter ratio = 13.9.

The title compound, $C_{17}H_{19}NO_4S$, has two independent molecules in the asymmetric unit linked by an N-H···O hydrogen bond. The principal difference between them lies in the relative orientations of the two aromatic rings. These are inclined at an angle of 3.70 (3)° in one molecule but at 58.41 (12)° in the other. N-H···O hydrogen bonds form zigzag chains down the *a* axis and these chains are further stabilized by weak C-H···O interactions, forming a network structure.

Related literature

For general background, see Patani & Lavoie (1996) and Yan *et al.* (2007). For related structures, see Ziemer *et al.* (2001), Kazak *et al.* (2000), Creaser *et al.* (2001) and Yu (2006).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{17}H_{19}NO_4S} \\ M_r = 333.39 \\ {\rm Orthorhombic, $P2_12_12_1$} \\ a = 7.5812 \ (4) \ {\rm \AA} \\ b = 11.6107 \ (7) \ {\rm \AA} \\ c = 37.659 \ (2) \ {\rm \AA} \end{array}$

V = 3314.8 (3) Å³ Z = 8 Mo K\alpha radiation μ = 0.22 mm⁻¹ T = 298 (2) K 0.29 × 0.24 × 0.09 mm

Data collection

Bruker APEX area-detector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2002) $T_{min} = 0.938, T_{max} = 0.979$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.078$ $wR(F^2) = 0.172$ S = 1.055844 reflections 419 parameters H-atom parameters constrained 17577 measured reflections 5844 independent reflections 5517 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.49 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ \Delta \rho_{\rm min} = -0.36 \ {\rm e} \ {\rm \mathring{A}}^{-3} \\ {\rm Absolute \ structure: \ Flack \ (1983),} \\ 2489 \ {\rm Friedel \ pairs} \\ {\rm Flack \ parameter: \ -0.03 \ (1)} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots O5$	0.86	2.04	2.844 (5)	155
$N2 - H2 \cdot \cdot \cdot O2^{i}$	0.86	2.18	2.938 (5)	146
C21-H21···O4	0.93	2.68	3.494 (6)	146
C30−H30···O1 ⁱⁱ	0.93	2.68	3.416 (6)	137
C9−H9···O8 ⁱⁱⁱ	0.93	2.67	3.521 (7)	153

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y + 1, z; (iii) -x + 2, $y - \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2002); software used to prepare material for publication: *SHELXL97*.

We acknowledge financial support from the Wenzhou Technology Project Foundation of China (No. S20060029) and the National Natural Science Foundation of China (No. 20571057).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2288).

References

- Bruker (2002). SADABS (Version 2.03), SAINT (Version 6.02), SMART (Version 5.62) and SHELXTL (Version 6.10). Bruker AXS Inc., Madison, Wisconsin, USA.
- Creaser, S. P., Pyke, S. M. & Tiekink, E. R. T. (2001). Z. Kristallogr. New Cryst. Struct. 216, 1267–640.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Kazak, C., Aygün, M., Turgut, G., Odabaşoĝlu, M., Özbey, S. & Büyükgüngör, O. (2000). Acta Cryst. C56, 1044–1045.
- Patani, G. A. & Lavoie, E. J. (1996). Chem. Rev. 96, 3147-3176.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Yan, X.-W., Hu, M.-L. & Xiong, J. (2007). Acta Cryst. E63, 0678-0679.
- Yu, Y.-Y. (2006). Acta Cryst. E62, o2308-o2309.

Ziemer, B., Surygina, O. & Ehwald, M. (2001). Acta Cryst. E57, o139-o140.

Acta Cryst. (2007). E63, o2707 [doi:10.1107/81600536807018600]

Methyl 2-(4-methylphenylsulfonamido)-3-phenylpropanoate

P. Yin, M.-L. Hu, J. Xiong and X.-W. Yan

Comment

The sulfonamide group is present in many bioactive compounds and has been used as protecting group (Yan *et al.*, 2007; Patani & Lavoie, 1996). In an extension of research on sulfonamide derivatives, we report here the synthesis and structure of the title compound (1), Fig. 1.

The title compound, $C_{17}H_8NO_4S$, has two independent molecules in the asymmetric unit linked by an N—H···O hydrogen bond. The methyl-3-phenyl propanoate residue carries a 4-methylbenzenesulfonamide substituent in the 2-position. The principal difference between the two unique molecules lies in the relative orientations of the two aromatic rings. These are inclined at 3.70 (3)° in one molecule but 58.41 (12)° in the other. N—H···O hydrogen bonds form zigzag rows down the a axis and these rows are further stabilised by weak C—H···O interactions forming a network structure.

Experimental

Aqueous NaOH (20 ml, 10%) was added dropwise to a mixture of 4-methylbenzene-1-sulfonyl chloride (10 mmol, 1.905 g) and methyl 2-amino-3-phenylpropanoate (12 mmol, 2.148 g) with constant stirring for 4 h. The solvent was then evaporated in a vacuum. After column chromatography on silica eluting with petroleum ether/ethyl acetate (5/1 v/v), the purified product was dissolved in ethanol and left for 10 d until single crystals formed.

Refinement

The all H atoms were positioned geometrically and allowed to ride on their parent atoms at distances of Csp^2 —H = 0.93 Å with $U_{iso} = 1.2U_{eq}$ (parent atom), Csp^3 —H = 0.96, 0.97 or 0.98 Å with $U_{iso} = 1.5U_{eq}$ (parent atom) and N—H = 0.86 Å with $U_{iso} = 1.2U_{eq}$ (parent atom).

Figures

Fig. 1. The asymmetric unit of (I) showing 30% probability displacement ellipsoids and the atomic numbering. The hydrogen bond linking the two unique molecules is shown as a dashed line.

Fig. 2. The crystal packing of (I) viewed down the b axis. Hydrogen bonds are drawn as dashed lines.

Methyl 2-(4-methylphenylsulfonamido)-3-phenylpropanoate

Crystal data	
C ₁₇ H ₁₉ NO ₄ S	$F_{000} = 1408$
$M_r = 333.39$	$D_{\rm x} = 1.336 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2ac 2ab	Cell parameters from 3436 reflections
a = 7.5812 (4) Å	$\theta = 2.2 - 24.2^{\circ}$
b = 11.6107 (7) Å	$\mu = 0.22 \text{ mm}^{-1}$
c = 37.659 (2) Å	T = 298 (2) K
$V = 3314.8 (3) \text{ Å}^3$	Block, colorless
<i>Z</i> = 8	$0.29\times0.24\times0.09~mm$

Data collection

Bruker APEX area-detector diffractometer	5844 independent reflections
Radiation source: fine-focus sealed tube	5517 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.041$
T = 298(2) K	$\theta_{\text{max}} = 25.0^{\circ}$
ϕ and ω scans	$\theta_{\min} = 1.1^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2002)	$h = -8 \rightarrow 9$
$T_{\min} = 0.938, T_{\max} = 0.979$	$k = -13 \rightarrow 13$
17577 measured reflections	$l = -44 \rightarrow 39$

Refinement

Refinement on F^2	Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full	H-atom parameters constrained
$R[F^2 > 2\sigma(F^2)] = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0689P)^2 + 1.5711P]$ where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.172$	$(\Delta/\sigma)_{\rm max} = 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 0.49 \text{ e } \text{\AA}^{-3}$
5844 reflections	$\Delta \rho_{min} = -0.36 \text{ e } \text{\AA}^{-3}$
419 parameters	Extinction correction: none
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2489 Friedel pairs
0	$E_{1} = 1$, means a term $0.02(1)$

Secondary atom site location: difference Fourier map Flack parameter: -0.03 (1)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds

in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.30565 (15)	0.41714 (9)	0.88519 (3)	0.0308 (3)
S2	0.78670 (15)	0.65352 (10)	0.87955 (3)	0.0332 (3)
01	0.1703 (4)	0.3475 (3)	0.90049 (9)	0.0436 (8)
O2	0.2899 (5)	0.5393 (3)	0.88534 (10)	0.0485 (9)
O3	0.5169 (5)	0.1975 (3)	0.97873 (9)	0.0509 (10)
O4	0.5427 (7)	0.3860 (3)	0.97724 (10)	0.0735 (14)
05	0.7735 (5)	0.5321 (3)	0.88491 (10)	0.0526 (10)
O6	0.6695 (4)	0.7071 (3)	0.85494 (9)	0.0485 (9)
07	0.9814 (6)	0.5722 (3)	0.80681 (9)	0.0555 (10)
08	1.0416 (8)	0.7242 (5)	0.77332 (11)	0.0972 (19)
N1	0.4871 (5)	0.3878 (3)	0.90489 (10)	0.0357 (9)
H1	0.5673	0.4402	0.9051	0.043*
N2	0.9852 (5)	0.6845 (3)	0.86746 (9)	0.0331 (9)
H2	1.0716	0.6608	0.8803	0.040*
C1	0.4465 (10)	0.2586 (7)	0.73480 (15)	0.077 (2)
H1A	0.4116	0.3152	0.7176	0.115*
H1B	0.3857	0.1876	0.7302	0.115*
H1C	0.5714	0.2462	0.7332	0.115*
C2	0.4004 (8)	0.3011 (5)	0.77176 (13)	0.0469 (13)
C3	0.4548 (8)	0.4083 (5)	0.78334 (14)	0.0509 (14)
Н3	0.5141	0.4564	0.7676	0.061*
C4	0.4240 (7)	0.4458 (4)	0.81734 (14)	0.0427 (13)
H4	0.4633	0.5179	0.8247	0.051*
C5	0.3334 (6)	0.3744 (4)	0.84049 (12)	0.0324 (11)
C6	0.2739 (7)	0.2682 (4)	0.82948 (13)	0.0456 (13)
H6	0.2119	0.2205	0.8449	0.055*
C7	0.3082 (8)	0.2343 (5)	0.79527 (14)	0.0550 (15)
H7	0.2670	0.1630	0.7877	0.066*
C8	0.7147 (8)	0.0712 (5)	0.80804 (15)	0.0575 (15)
H8	0.7168	0.0360	0.7859	0.069*
С9	0.7900 (8)	0.1786 (5)	0.81268 (14)	0.0540 (14)
Н9	0.8446	0.2154	0.7937	0.065*
C10	0.7839 (7)	0.2306 (4)	0.84540 (13)	0.0422 (12)
H10	0.8338	0.3032	0.8482	0.051*
C11	0.7059 (6)	0.1780 (4)	0.87402 (11)	0.0323 (10)
C12	0.6303 (7)	0.0701 (5)	0.86856 (14)	0.0463 (13)
H12	0.5740	0.0337	0.8874	0.056*
C13	0.6364 (8)	0.0164 (5)	0.83651 (16)	0.0551 (15)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

H13	0.5881	-0.0567	0.8338	0.066*
C14	0.7054 (6)	0.2304 (4)	0.91055 (11)	0.0361 (11)
H14A	0.7918	0.2920	0.9112	0.043*
H14B	0.7425	0.1723	0.9275	0.043*
C15	0.5268 (6)	0.2789 (4)	0.92248 (11)	0.0285 (10)
H15	0.4343	0.2231	0.9166	0.034*
C16	0.5283 (6)	0.2975 (4)	0.96227 (13)	0.0358 (11)
C17	0.5214 (9)	0.1996 (6)	1.01749 (14)	0.0658 (17)
H17A	0.6413	0.1932	1.0254	0.099*
H17B	0.4539	0.1362	1.0266	0.099*
H17C	0.4720	0.2707	1.0259	0.099*
C18	0.6813 (9)	0.8776 (5)	1.02333 (15)	0.0652 (17)
H18A	0.5868	0.8395	1.0356	0.098*
H18B	0.6526	0.9575	1.0203	0.098*
H18C	0.7879	0.8708	1.0369	0.098*
C19	0.7072 (7)	0.8225 (4)	0.98741 (13)	0.0427 (12)
C20	0.6593 (6)	0.7100 (5)	0.98159 (13)	0.0460 (13)
H20	0.6089	0.6681	1.0000	0.055*
C21	0.6837 (7)	0.6577 (4)	0.94926 (12)	0.0414 (12)
H21	0.6495	0.5816	0.9459	0.050*
C22	0.7590 (5)	0.7186 (4)	0.92179 (12)	0.0314 (10)
C23	0 8106 (7)	0.8313 (4)	0.92689 (13)	0.0401 (12)
H23	0.8630	0.8725	0.9085	0.048*
C24	0.7836 (7)	0.8820 (4)	0.95953 (14)	0.0444 (12)
H24	0.8176	0.9582	0.9629	0.053*
C25	1.2226 (7)	1.0151 (5)	0.93353 (15)	0.0491 (14)
H25	1 2241	1 0585	0 9543	0.059*
C26	1 3082 (7)	0 9111 (5)	0.93215 (14)	0.0519(14)
H26	1.3702	0.8849	0.9519	0.062*
C27	1.3029 (7)	0.8457 (4)	0.90196 (14)	0.0421 (12)
H27	1 3591	0 7745	0 9016	0.051*
C28	1 2150 (6)	0.8836 (4)	0.87189 (12)	0.0343 (11)
C29	1 1317 (6)	0 9901 (4)	0.87353 (14)	0.0404 (12)
H29	1.0729	1 0183	0.8537	0.049*
C30	1.1352 (7)	1 0544 (4)	0.90425 (16)	0.0457(13)
H30	1.0777	1 1251	0.9051	0.055*
C31	1.0777 1 2030 (7)	0 8098 (4)	0.83955 (13)	0.033 0.0439(12)
H31A	1.2030 (7)	0.7513	0.8406	0.053*
H31R	1.2250	0.8569	0.8187	0.053*
C32	1.0244 (6)	0.7511 (4)	0.8157 0.83555(12)	0.035
H32	0.9350	0.8118	0.8336	0.0303 (12)
C33	1 0183 (7)	0.6815 (5)	0.80167 (12)	0.040°
C34	1.0105(7)	0.0013 (3)	0.00107(13) 0.77507(17)	0.0471(14) 0.076(2)
U34 H34A	0.9745 (10)	0.4771 (0)	0.7573	0.070(2)
1134A 1124D	0.2020	0.3343	0.7373	0.113*
пј40	1.0010	0.4204	0.7622	0.113*
H34C	1.0919	0.4609	0.7080	0.115"

Atomic dis	placement	parameters	$(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0306 (6)	0.0310 (6)	0.0309 (6)	0.0008 (5)	-0.0019 (5)	0.0014 (5)
S2	0.0268 (5)	0.0380 (6)	0.0347 (6)	-0.0098 (5)	0.0015 (5)	-0.0005 (5)
01	0.0349 (18)	0.054 (2)	0.0419 (19)	0.0009 (17)	0.0030 (15)	0.0007 (16)
02	0.053 (2)	0.0405 (19)	0.052 (2)	0.0063 (18)	-0.008 (2)	-0.0012 (16)
03	0.077 (3)	0.041 (2)	0.0342 (19)	-0.008 (2)	0.0005 (18)	0.0058 (16)
O4	0.139 (4)	0.046 (2)	0.036 (2)	-0.004 (3)	-0.002 (2)	-0.0130 (18)
05	0.053 (2)	0.041 (2)	0.064 (2)	-0.0175 (17)	0.018 (2)	-0.0087 (18)
O6	0.0319 (19)	0.074 (3)	0.0391 (19)	-0.0033 (19)	-0.0007 (15)	-0.0007 (18)
07	0.073 (3)	0.050 (2)	0.043 (2)	0.001 (2)	0.005 (2)	-0.0105 (19)
08	0.152 (5)	0.106 (4)	0.033 (2)	-0.051 (4)	0.012 (3)	-0.001 (2)
N1	0.035 (2)	0.036 (2)	0.035 (2)	-0.0139 (19)	-0.0022 (18)	0.0040 (17)
N2	0.029 (2)	0.037 (2)	0.034 (2)	-0.0010 (17)	-0.0003 (17)	0.0051 (17)
C1	0.088 (5)	0.102 (6)	0.040 (3)	0.008 (4)	0.004 (3)	-0.004 (4)
C2	0.053 (3)	0.056 (4)	0.032 (3)	0.012 (3)	-0.003 (2)	0.002 (3)
C3	0.055 (3)	0.058 (4)	0.040 (3)	-0.006 (3)	0.002 (3)	0.018 (3)
C4	0.048 (3)	0.036 (3)	0.044 (3)	-0.009 (2)	-0.007 (2)	0.011 (2)
C5	0.033 (2)	0.035 (2)	0.030 (2)	0.004 (2)	-0.003 (2)	0.0047 (19)
C6	0.056 (3)	0.045 (3)	0.036 (3)	-0.017 (3)	-0.004 (2)	0.002 (2)
C7	0.069 (4)	0.045 (3)	0.051 (3)	-0.018 (3)	-0.005 (3)	-0.008 (3)
C8	0.055 (3)	0.075 (4)	0.042 (3)	0.005 (3)	-0.002 (3)	-0.028 (3)
C9	0.056 (3)	0.070 (4)	0.037 (3)	0.001 (3)	0.012 (3)	0.000 (3)
C10	0.043 (3)	0.042 (3)	0.041 (3)	-0.001 (3)	0.000 (2)	0.000 (2)
C11	0.027 (2)	0.033 (2)	0.036 (2)	0.007 (2)	-0.001 (2)	0.0027 (19)
C12	0.043 (3)	0.053 (3)	0.043 (3)	0.000 (3)	0.007 (2)	0.004 (3)
C13	0.058 (4)	0.049 (3)	0.058 (4)	-0.005 (3)	0.005 (3)	-0.023 (3)
C14	0.030 (2)	0.044 (3)	0.035 (3)	-0.001 (2)	-0.002 (2)	0.002 (2)
C15	0.029 (2)	0.024 (2)	0.033 (2)	-0.0012 (19)	0.0010 (19)	-0.0007 (19)
C16	0.030 (3)	0.041 (3)	0.037 (3)	-0.002 (2)	-0.002 (2)	0.001 (2)
C17	0.082 (4)	0.079 (4)	0.036 (3)	0.001 (4)	0.011 (3)	0.013 (3)
C18	0.070 (4)	0.075 (4)	0.051 (4)	-0.003 (4)	0.014 (3)	-0.007 (3)
C19	0.033 (3)	0.054 (3)	0.041 (3)	0.004 (3)	0.000 (2)	-0.002 (2)
C20	0.039 (3)	0.059 (3)	0.040 (3)	-0.013 (3)	0.008 (2)	0.013 (3)
C21	0.042 (3)	0.041 (3)	0.042 (3)	-0.011 (3)	0.005 (2)	0.005 (2)
C22	0.022 (2)	0.035 (3)	0.037 (2)	0.0004 (18)	-0.0012 (18)	0.002 (2)
C23	0.044 (3)	0.036 (3)	0.041 (3)	-0.005 (2)	0.015 (2)	0.008 (2)
C24	0.047 (3)	0.034 (3)	0.052 (3)	-0.001 (3)	0.003 (3)	0.000 (2)
C25	0.040 (3)	0.049 (3)	0.059 (3)	-0.010 (3)	0.007 (3)	-0.016 (3)
C26	0.045 (3)	0.063 (4)	0.047 (3)	-0.018 (3)	-0.005 (3)	0.004 (3)
C27	0.033 (3)	0.037 (3)	0.056 (3)	-0.001 (3)	-0.002 (3)	0.006 (2)
C28	0.025 (2)	0.035 (2)	0.043 (3)	-0.011 (2)	0.006 (2)	0.009 (2)
C29	0.036 (3)	0.034 (3)	0.051 (3)	-0.003 (2)	-0.004 (2)	0.014 (2)
C30	0.037 (3)	0.028 (3)	0.071 (4)	0.001 (2)	0.008 (3)	-0.004 (3)
C31	0.040 (3)	0.042 (3)	0.050 (3)	-0.006 (3)	0.010 (3)	0.005 (2)
C32	0.038 (3)	0.041 (3)	0.037 (3)	-0.003 (2)	0.008 (2)	0.006 (2)

C33	0.043 (3)	0.070 (4)	0.029 (3)	-0.009 (3)	0.000 (2)	0.001 (3)
C34	0.090 (5)	0.073 (4)	0.064 (4)	0.002 (4)	0.002 (4)	-0.031 (4)
Geometric param	neters (Å, °)					
S1—O2		1.423 (3)	С13—Н	13	0	.9300
S1—O1		1.428 (4)	C14—C	15	1	.534 (6)
S1—N1		1.600 (4)	С14—Н	14A	0	.9700
S1—C5		1.768 (5)	С14—Н	14B	0	.9700
S2—O6		1.427 (4)	C15—C	16	1	.514 (6)
S2—O5		1.427 (4)	С15—Н	15	0	.9800
S2—N2		1.613 (4)	С17—Н	17A	0	.9600
S2—C22		1.774 (5)	С17—Н	17B	0	.9600
O3—C16		1.318 (6)	С17—Н	17C	0	.9600
O3—C17		1.460 (6)	C18—C	19	1	.509 (7)
O4—C16		1.178 (6)	С18—Н	18A	0	.9600
O7—C33		1.313 (7)	С18—Н	18B	0	.9600
O7—C34		1.453 (7)	С18—Н	18C	0	.9600
O8—C33		1.190 (6)	С19—С	20	1	.374 (7)
N1—C15		1.459 (6)	C19—C	24	1	.384 (7)
N1—H1		0.8600	С20—С	21	1	.373 (7)
N2—C32		1.459 (6)	С20—Н	20	0	.9300
N2—H2		0.8600	C21—C	22	1	.377 (6)
C1—C2		1.517 (8)	С21—Н	21	0	.9300
C1—H1A		0.9600	С22—С	23	1	.378 (6)
C1—H1B		0.9600	С23—С	24	1	.378 (7)
C1—H1C		0.9600	С23—Н	23	0	.9300
C2—C7		1.368 (8)	С24—Н	24	0	.9300
C2—C3		1.382 (8)	C25—C	30	1	.365 (8)
C3—C4		1.373 (7)	C25—C	26	1	.371 (8)
С3—Н3		0.9300	С25—Н	25	0	.9300
C4—C5		1.385 (7)	C26—C	27	1	.368 (7)
C4—H4		0.9300	С26—Н	26	0	.9300
C5—C6		1.377 (7)	С27—С	28	1	.386 (7)
C6—C7		1.372 (7)	С27—Н	27	0	.9300
С6—Н6		0.9300	C28—C	29	1	.390 (7)
С7—Н7		0.9300	C28—C	31	1	.492 (7)
C8—C13		1.381 (8)	С29—С	30	1	.377 (7)
C8—C9		1.382 (8)	С29—Н	29	0	.9300
C8—H8		0.9300	С30—Н	30	0	.9300
C9—C10		1.373 (7)	C31—C	32	1	.523 (7)
С9—Н9		0.9300	С31—Н	31A	0	.9700
C10—C11		1.373 (6)	С31—Н	31B	0	.9700
C10—H10		0.9300	C32—C	33	1	.511 (7)
C11—C12		1.393 (7)	С32—Н	32	0	.9800
C11—C14		1.504 (6)	С34—Н	34A	0	.9600
C12—C13		1.359 (7)	С34—Н	34B	0	.9600
C12—H12		0.9300	С34—Н	34C	0	.9600
O2—S1—O1		120.2 (2)	C14—C	15—H15	1	08.8

O2—S1—N1	106.4 (2)	O4—C16—O3	123.3 (5)
01—S1—N1	108.1 (2)	O4—C16—C15	126.8 (5)
O2—S1—C5	107.1 (2)	O3—C16—C15	109.8 (4)
01—S1—C5	108.1 (2)	O3—C17—H17A	109.5
N1—S1—C5	106.2 (2)	O3—C17—H17B	109.5
O6—S2—O5	118.6 (2)	H17A—C17—H17B	109.5
O6—S2—N2	107.5 (2)	O3—C17—H17C	109.5
O5—S2—N2	109.0 (2)	H17A—C17—H17C	109.5
O6—S2—C22	108.9 (2)	H17B—C17—H17C	109.5
O5—S2—C22	106.6 (2)	C19—C18—H18A	109.5
N2—S2—C22	105.6 (2)	C19—C18—H18B	109.5
C16—O3—C17	117.0 (4)	H18A—C18—H18B	109.5
C33—O7—C34	118.0 (5)	C19—C18—H18C	109.5
C15—N1—S1	124.9 (3)	H18A—C18—H18C	109.5
C15—N1—H1	117.5	H18B—C18—H18C	109.5
S1—N1—H1	117.5	C20-C19-C24	117.7 (5)
C32—N2—S2	122.7 (3)	C20—C19—C18	120.8 (5)
C32—N2—H2	118.6	C24—C19—C18	121.5 (5)
S2—N2—H2	118.6	C21—C20—C19	121.7 (5)
C2—C1—H1A	109.5	С21—С20—Н20	119.1
C2—C1—H1B	109.5	С19—С20—Н20	119.1
H1A—C1—H1B	109.5	C20—C21—C22	119.7 (5)
C2-C1-H1C	109.5	C20—C21—H21	120.2
H1A—C1—H1C	109.5	C22—C21—H21	120.2
H1B—C1—H1C	109.5	C21—C22—C23	120.0 (4)
C7—C2—C3	117.3 (5)	C21—C22—S2	120.2 (4)
C7—C2—C1	121.8 (6)	C23—C22—S2	119.7 (4)
C3—C2—C1	120.9 (6)	C22—C23—C24	119.2 (4)
C4—C3—C2	122.0 (5)	С22—С23—Н23	120.4
С4—С3—Н3	119.0	C24—C23—H23	120.4
С2—С3—Н3	119.0	C23—C24—C19	121.7 (5)
C3—C4—C5	118.7 (5)	C23—C24—H24	119.2
C3—C4—H4	120.6	C19—C24—H24	119.2
C5—C4—H4	120.6	C30—C25—C26	119.6 (5)
C6—C5—C4	120.6 (5)	С30—С25—Н25	120.2
C6—C5—S1	119.9 (4)	C26—C25—H25	120.2
C4—C5—S1	119.4 (4)	C27—C26—C25	120.4 (5)
C7—C6—C5	118.5 (5)	C27—C26—H26	119.8
С7—С6—Н6	120.7	С25—С26—Н26	119.8
С5—С6—Н6	120.7	C26—C27—C28	121.1 (5)
C2—C7—C6	122.8 (5)	С26—С27—Н27	119.4
С2—С7—Н7	118.6	С28—С27—Н27	119.4
С6—С7—Н7	118.6	C27—C28—C29	117.7 (5)
C13—C8—C9	119.7 (5)	C27—C28—C31	120.9 (4)
С13—С8—Н8	120.2	C29—C28—C31	121.3 (4)
С9—С8—Н8	120.2	C30—C29—C28	120.7 (5)
C10—C9—C8	119.8 (5)	С30—С29—Н29	119.6
С10—С9—Н9	120.1	С28—С29—Н29	119.6
С8—С9—Н9	120.1	C25—C30—C29	120.4 (5)

C11—C10—C9	121.5 (5)	С25—С30—Н30	119.8
C11—C10—H10	119.2	С29—С30—Н30	119.8
С9—С10—Н10	119.2	C28—C31—C32	113.1 (4)
C10-C11-C12	117.5 (4)	C28—C31—H31A	109.0
C10-C11-C14	122.6 (4)	С32—С31—Н31А	109.0
C12—C11—C14	119.9 (4)	C28—C31—H31B	109.0
C13—C12—C11	122.0 (5)	С32—С31—Н31В	109.0
C13—C12—H12	119.0	H31A—C31—H31B	107.8
C11—C12—H12	119.0	N2—C32—C33	113.9 (4)
C12—C13—C8	119.5 (5)	N2—C32—C31	109.7 (4)
C12—C13—H13	120.2	C33—C32—C31	110.5 (4)
C8—C13—H13	120.2	N2—C32—H32	107.5
C11—C14—C15	114.7 (4)	С33—С32—Н32	107.5
C11—C14—H14A	108.6	С31—С32—Н32	107.5
C15—C14—H14A	108.6	O8—C33—O7	124.5 (5)
C11—C14—H14B	108.6	O8—C33—C32	122.0 (5)
C15-C14-H14B	108.6	O7—C33—C32	113.5 (4)
H14A—C14—H14B	107.6	O7—C34—H34A	109.5
N1-C15-C16	109.1 (4)	O7—C34—H34B	109.5
N1-C15-C14	111.5 (4)	H34A—C34—H34B	109.5
C16-C15-C14	109.6 (4)	O7—C34—H34C	109.5
N1—C15—H15	108.8	H34A—C34—H34C	109.5
C16—C15—H15	108.8	H34B—C34—H34C	109.5
O2—S1—N1—C15	155.8 (4)	C14—C15—C16—O4	103.6 (6)
O1—S1—N1—C15	25.5 (4)	N1-C15-C16-O3	163.4 (4)
C5—S1—N1—C15	-90.3 (4)	C14—C15—C16—O3	-74.2 (5)
O6—S2—N2—C32	-2.8 (4)	C24—C19—C20—C21	-0.7 (8)
O5—S2—N2—C32	126.9 (4)	C18—C19—C20—C21	-179.2 (5)
C22—S2—N2—C32	-118.9 (4)	C19—C20—C21—C22	0.4 (8)
C7—C2—C3—C4	2.2 (9)	C20-C21-C22-C23	0.4 (7)
C1—C2—C3—C4	-176.0 (6)	C20-C21-C22-S2	-178.5 (4)
C2—C3—C4—C5	-0.9 (8)	O6—S2—C22—C21	110.8 (4)
C3—C4—C5—C6	-0.6 (8)	O5—S2—C22—C21	-18.2 (4)
C3—C4—C5—S1	175.7 (4)	N2-S2-C22-C21	-134.0 (4)
O2—S1—C5—C6	-150.3 (4)	O6—S2—C22—C23	-68.1 (4)
O1—S1—C5—C6	-19.6 (5)	O5—S2—C22—C23	162.9 (4)
N1—S1—C5—C6	96.2 (4)	N2—S2—C22—C23	47.1 (4)
O2—S1—C5—C4	33.4 (4)	C21—C22—C23—C24	-0.8 (7)
O1—S1—C5—C4	164.1 (4)	S2—C22—C23—C24	178.1 (4)
N1—S1—C5—C4	-80.0 (4)	C22-C23-C24-C19	0.5 (8)
C4—C5—C6—C7	0.7 (8)	C20-C19-C24-C23	0.3 (8)
S1—C5—C6—C7	-175.6 (4)	C18—C19—C24—C23	178.7 (5)
C3—C2—C7—C6	-2.1 (9)	C30-C25-C26-C27	-1.5 (8)
C1—C2—C7—C6	176.1 (6)	C25—C26—C27—C28	1.5 (8)
C5—C6—C7—C2	0.7 (9)	C26—C27—C28—C29	-0.4 (7)
C13—C8—C9—C10	-1.0 (9)	C26—C27—C28—C31	-177.4 (4)
C8—C9—C10—C11	0.6 (8)	C27—C28—C29—C30	-0.8 (7)
C9—C10—C11—C12	-0.9 (7)	C31—C28—C29—C30	176.2 (4)
C9—C10—C11—C14	176.8 (5)	C26—C25—C30—C29	0.4 (8)

C10-C11-C12-C13	1.6 (8)	C28—C29—C30—C25	0.8 (8)
C14—C11—C12—C13	-176.2 (5)	C27—C28—C31—C32	102.0 (5)
C11—C12—C13—C8	-2.0 (9)	C29—C28—C31—C32	-74.9 (6)
C9—C8—C13—C12	1.7 (9)	S2—N2—C32—C33	-80.4 (5)
C10-C11-C14-C15	106.8 (5)	S2—N2—C32—C31	155.2 (3)
C12-C11-C14-C15	-75.4 (5)	C28—C31—C32—N2	-55.8 (5)
S1-N1-C15-C16	-108.6 (4)	C28—C31—C32—C33	177.8 (4)
S1-N1-C15-C14	130.1 (4)	C34—O7—C33—O8	2.2 (9)
C11-C14-C15-N1	-75.1 (5)	C34—O7—C33—C32	-179.3 (5)
C11-C14-C15-C16	164.0 (4)	N2-C32-C33-O8	177.5 (5)
C17—O3—C16—O4	0.5 (8)	C31—C32—C33—O8	-58.5 (7)
C17—O3—C16—C15	178.4 (4)	N2—C32—C33—O7	-1.0 (6)
N1-C15-C16-O4	-18.8 (7)	C31—C32—C33—O7	123.0 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1…O5	0.86	2.04	2.844 (5)	155
N2—H2····O2 ⁱ	0.86	2.18	2.938 (5)	146
C21—H21···O4	0.93	2.68	3.494 (6)	146
C30—H30…O1 ⁱⁱ	0.93	2.68	3.416 (6)	137
С9—Н9…О8 ^{ііі}	0.93	2.67	3.521 (7)	153
	1/2	2/2		

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1, *y*+1, *z*; (iii) –*x*+2, *y*–1/2, –*z*+3/2.

